Minimize \( \|Ax\| s.t. \|x\| = 1 \)

Table of Contents

Solution

  • Do a svd on A
  • x = the v vector corresponding to the smallest singular value.

SVD

One way to understand SVD is as follows:

800px-Singular_value_decomposition_visualisation.svg.png

Another way is:

\( A=\sum_{i=1}^r\lambda_iu_iv_i^T \), where \( \lambda_i \) is the singular value; \( u_i, v_i \) are the column vectors of \( U, V \). These column vectors are orthogonal to each other, meaning \( u_i^Tu_j=\left\{\begin{matrix}0,\text{ if }i\neq j \\1,\text{ if }i=j \end{matrix}\right. \) and \( v_i^Tv_j=\left\{\begin{matrix}0,\text{ if }i\neq j \\1,\text{ if }i=j \end{matrix}\right. \)

For real matrix, all singular values are non-negative.

Proof

  • First, we assume m > n and n = r, otherwise, the result would be 0.
  • Decompose x into v-space, \( x=\sum_{i=1}^n x=x_iv_i \).
  • \( Ax=\sum_{i=1}^n \lambda_iu_iv_i^T\sum_{j=1}^n x_jv_j=\sum_{i=1}^n \lambda_ix_iu_i \).
  • \( \|Ax\|=\sqrt{\sum_{i=1}^r \lambda_i^2x_i^2}\text{ where }\sum_{i=1}^n x_i^2 = 1 \). This is true because ui and vi are orthogonal.
  • Now you can see \( \|Ax\|=\lambda_n,\text{ if }x_i=\left\{\begin{matrix}0,\text{ if }i\neq n\\ 1,\text{ if }i=n\end{matrix}\right. \). Here I assume singular values are sorted from large to small.

Date: 2021-10-06 07:28:18 -0800